Audit Report of SIMAT Particle Monitoring Network

Performed 2-4 October, 2013

Prepared for:	Dirección de Monitoreo Atmosférico, Secretaría del Medio Ambiente del Distrito Federal
Prepared by:	George Allen, Consultant
Submitted:	October 22, 2013

Summary.

An audit of particle samplers at 8 sites in the Sistema de Monitoreo Atmosférico de la Ciudad de México (SIMAT) network was performed on 2-4 October, 2013. Both manual (FRM) and continuous samplers were audited. Audits consisted of flow and leak checks for each sampler as well as review of other relevant operating parameters. At most sites comparisons between audit and site flow standards were also made. Audits were performed on PM monitors at the following sites:

Tlalnepantla Xalostoc Pedregal Merced San Agustin Hospital General de Mexico Camarones

PM monitors audited included R&P (Thermo) and BGI manual FRM samplers (8), and Thermo TEOM (8) continuous samplers – 16 sampler audits total. The TEOM samplers were model 1405DF dichot FDMS for PM2.5 and PM-coarse and are approved as US EPA Federal Equivalent Monitors (FEM) when operated in accordance with the instrument manual.

Audit results are based on the sample flows reported by the sampler, not the flow measured by the site manual flow check, since data are reduced by the data reported by the sampler.

A summary of audit results follows; only samplers with audit flow errors > 4% or other instrument parameters that exceeded acceptable limits are listed here. Audit flow criteria used were 4% for warning, and 7% for fail. For TEOMs, where the sample inlet flow is not the sample sensor flow, a criteria of 10% is used for inlet flow. All audit flows were measured at local temperature and pressure using a BGI tetraCal flowmeter, s/n 304, factory calibrated 9 August 2013.

<u>1405 TEOM:</u> XAL 1405DF PM-coarse -6.2%* SAG 1405DF PM-coarse -6.2 %*

* coarse channel flow error in a dichot sampler does not directly reflect measurement error.

In summary, all TEOM and FRM samplers passed the flow audits, and all but 2 sampler flows were within 4% of the audit flow standard.

During the audit, other aspects of the network operation were informally reviewed, both at field sites and at the SIMAT laboratory. Overall, the operation of the network is very robust, with strong QA/QC systems in place. Interactions with SIMAT staff indicated a high level of skill and understanding of the network's systems.

Introduction.

Sistema de Monitoreo Atmosférico de la Ciudad de México (SIMAT) requested an external audit of network PM samplers to be performed in the fall of 2013. An external audit is an on-site, independent measurement of sampler flows and related instrument parameters on instruments "as found" – no adjustments. SIMAT supplied a list of sites and samplers to audit over a three-day period; audits were performed 2-4 October 2013, using an audit flowmeter, BGI tetraCal s/n 304, factory calibrated on 9 August 2013.

Unlike audits for gas samplers such as ozone or sulfur dioxide, PM samplers can not be "challenged" with a known standard of the pollutant being measured; it is not practical to generate an aerosol of known concentration at a field site. Thus, only indicators of performance such as flows and leak checks can be audited, and a successful audit does not by itself guarantee that the sampler is producing data of known quality. Ongoing co-location with other samplers is an essential component of a quality program for PM samplers.

The SIMAT staff were present for the audits, and performed parallel sampler flow checks on most of the audited samplers. Those measurements are not part of the audit, but can be used as diagnostics when audit results indicate possible problems.

SIMAT staff present for all audits: Juan Manuel Campos Díaz Jesusyael Jímenez Valdez Armando Retama Hernandez

PM sampler flows are nominally controlled at the inlet flow setpoint of 16.67 lpm, and all audit results for FRM and TEOM sampler inlet flows are calculated relative to this flow. Sensor flows for TEOM samplers are 3 lpm for the PM2.5 channel and 1.67 lpm for the coarse PM channel. These flows are controlled to their respective design setpoints.

Audit result flow errors are calculated as: (sampler flow minus audit flow)/audit flow and expressed as percent difference (%diff). Flow error limits used in this report are as follows:

Pass:	No more than 4%
Warning:	greater than 4 and no more than 7% (underlined in tables)
Fail:	greater than 7% (bold in tables)

There are two exceptions to these audit criteria:

1. Inlet flows for TEOMs. The TEOM sensor flow is a small portion of the inlet flow; the inlet flow only determines the particle size cut; thus inlet flow errors do not directly impact data quality. An audit limit of 10% is used for TEOM inlet flows.

2. TEOM dichotomous (dichot) coarse channel flows. In theory, all the coarse PM in the sample inlet flow is present in the coarse channel (along with 10% of the PM2.5). The dichot "virtual impactor" performance is a function of the ratio of total to minor flows; in this case that

is the inlet and coarse channel flow. The design value ratio for the TEOM-DF virtual impactor is 10. To assess performance of a dichot sampler's coarse channel, the total flow should be within 10% of the design value (16.7 lpm), and the total to minor flow ratio should be within 7% of the design value (10). The flow error of the coarse channel should also be within 10% of the design value (1.67).

Finally, the TEOM samplers have an internal calibration value for the mass detector, K_0 . This value was also audited, with a tolerance of 2% for warning and 2.5% for failure.

Results.

Detailed audit results for each sampler are given in table 1 for FRM samplers, and table 2 for TEOM samplers. Sampler flows were also measured with the site flowmeter; these readings are included in the audit tables.

FRM (manual) samplers: all FRM samplers passed the audit. Audit flow errors were less than 3% for all samplers. In the context of system QC, it is very important that the FRM samplers be operating properly, since the performance of the automated (FEM) samplers is in part determined by comparison to the FRM sampler data.

TEOM (FEM automated) samplers: Two of the seven TEOM samplers showed audit flows outside of in the normal range for PM-coarse:

XAL 1405DF PM-coarse -6.2% SAG 1405DF PM-coarse -6.2%

All audited TEOM samplers had virtual impactor ratios within the 7% tolerance, although XAL was close to the limit, at 6.8%.

TEOM K_0 values were all within the 2% limit except for the MER coarse channel, which was -2.3% different than the audit standard. This test was repeated with a different audit K_0 filter with similar results (-2.1%). These results are consistent with the 2012 audits.

One TEOM (CAM) failed the bypass flow leak check by a small amount. While it is unlikely that this failure would effect the data, it does indicate the need for maintenance.

Half (4 of 8) FDMS TEOMs audited did not have the FEM sticker on the instrument; these were older instruments. While it is likely that these TEOMs meet the FEM requirements, this needs confirmation by the manufacturer, and stickers should be requested and applied to these instruments.

Table 1: FRM PM2.5 Manual Sampler Audit Results.

Bold indicates out of audit limits (7%)

All flows LPM as Qa

Under	line means	correc	tive action is nee	eded (4%)					Site -			
					Audit	Sampler	Audit	Site	Audit	%	Leak Test**	
<u>Site</u>	<u>Date</u>	Mfg	Model	<u>Serial #</u>	Flow	Flow	<u>% Diff</u>	Flow	Flow	<u>Diff *</u>	Pass/Fail	
XAL	2-Oct-13	BGI	PQ-200	988	16.75	16.7	0.30	16.7	-0.01	-0.06	N/A - old me	ethod used
TLA	2-Oct-13	R&P	Partisol 2000-H	200FB205360112	16.23	16.7	-2.90	16.9	0.63	3.88	Pass	
SAG	2-Oct-13	BGI	PQ-200	615	16.55	16.7	-0.91	16.59	0.04	0.24	Pass	
MER	3-Oct-13	BGI	PQ-200	608	16.83	16.7	0.77	16.70	-0.13	-0.77	Pass	
PED	3-Oct-13	R&P	Partisol 2000-H	200FB205310111	16.73	16.7	0.18	16.63	-0.10	-0.60	Pass	Primary
PED	3-Oct-13	R&P	Partisol 2000-H	200FB206820505	16.67	16.67	0.00	16.71	0.04	0.24	Pass	Collo
PED	3-Oct-13	R&P	Partisol 2000-H	200FB205350112	16.67	16.6	0.42	16.66	-0.01	-0.06	Pass	
CAM	4-Oct-13	R&P	Partisol 2000-H	200FB205290111	16.86	16.6	1.54	16.88	0.02	0.12	Pass	
Site fl	Site flowmeter: <u>Notes:</u>											

BGI deltaCal sn 980 for all sites

* not used for audit results ** based on mfg. criteria

Notes:

1. The Leak Test for the Xalostoc FRM was not performed using the new procedures necessary for PQ-200 samplers with serial numbers 906 and higher. Thus the leak test results are not valid.

2. The CAM FRM inlet and PM2.5 WINS impactor cleaning dates reported by SIMAT during the audit were 25 Sept. 13 for both the inlet and WINS impactor. However, observations by Armando Retama (SIMAT staff) showed that both the inlet and the WINS and down tube were not clean. In addition, the WINS impactor did not have the required oil; only the fiber filter was inside the WINS. Although these issues are unlikely to significantly affect data quality, these are substantial variations from required operating practice and should be investigated.

Table 2: Thermo FDMS-TEOM Continuous Sampler Audit Results.

All flows LPM as Qa

						Inlet	Audit	Sampler	Fine	Audit	Sampler	Coarse	inlet to	Audit
	Thermo			Audit	Sampler	Audit	Fine	Fine	Audit	Coarse	Coarse	Audit	coarse	ratio
<u>Site</u>	Date Model	Serial #	PM size	Inlet flow	Inlet	<u>% diff</u>	sensor	sensor	<u>% diff</u>	<u>Channel</u>	<u>Channel</u>	<u>% diff</u>	<u>ratio</u>	<u>% diff</u>
XAL	2-Oct-13 1405DF	211841011	Dichot	16.59	16.67	0.48	2.99	3	0.33	1.78	1.67	<u>-6.18</u>	9.32	-6.80
TLA	2-Oct-13 1405DF *	204730904	Dichot	16.30	16.67	2.27	2.94	3	2.04	1.66	1.67	0.60	9.82	-1.81
SAG	2-Oct-13 1405DF	211341010	Dichot	16.80	16.67	-0.77	3.02	3	-0.66	1.78	1.67	<u>-6.18</u>	9.44	-5.62
HGM	3-Oct-13 1405DF	211191009	Dichot	16.90	16.67	-1.36	3.07	3	-2.28	1.71	1.67	-2.34	9.88	-1.17
PED	3-Oct-13 1405DF *	204770905	Dichot	16.66	16.67	0.06	3.02	3	-0.66	1.65	1.67	1.21	10.10	0.97
MER	3-Oct-13 1405DF *	204390903	Dichot	16.52	16.67	0.91	3.03	3	-0.99	1.7	1.67	-1.76	9.72	-2.82
CAM	4-Oct-13 1405DF	211331010	Dichot	16.60	16.67	0.42	3.05	3	-1.64	1.67	1.67	0.00	9.94	-0.60
SFE	4-Oct-13 1405DF *	204740904	Dichot	16.33	16.67	2.08	3.05	3	-1.64	1.67	1.67	0.00	9.78	-2.22
	* po FEM at	ieker on instrum	ont											

* *

Audit ***

* no FEM sticker on instrument.

Bold indicates out of audit flow limits (7%) for dichot fine channel

underline means corrective action may be needed (4% for flow; 2% for K0)

** For Dichot Coarse Mass Flow Audit Results, the CM flow error is not a direct indicator of CM concentration error; that is a function of total flow and total to coarse flow ratios and PM concentrations.

*** The inlet to coarse flow ratio limit is 10%.

Inlet flow TEOM audit results have a minimal effect on measurement error; an inlet flow tolerance of 10% is acceptable.

Additio	nal audit checks:	K0 Checks	with filte	<u>r #01:</u>	Audit K0 limit = 2	% warni	ng; 2.5%	5 fail (based on mfg limits)
		Fine Chanr	nel		Coarse Ch	nannel		
Leak Cl	heck <u>Result</u>	<u>Audit</u>	<u>Site</u>	<u>%Diff.</u>	<u>Audit</u>	<u>Site</u>	<u>%Diff.</u>	
XAL	2-Oct-13 Pass	15148.0	15064	0.56	15148.0	15962	0.79	
TLA	2-Oct-13 Pass	15740.0	15476	1.71	14515.9	14369	1.02	
SAG	2-Oct-13 Pass	15048.0	15061	0.09	16859.7	17022	0.95	
HGM	3-Oct-13 Pass	14870.7	14782	0.60	16495.0	16447	0.29	
PED	3-Oct-13 Pass	15885.0	15614	1.74	14535.3	14320	1.50	
MER	3-Oct-13 Pass	16017.8	15789	1.45	14572.0	14249	<u>2.27</u>	audit K0 filter #02 result was 2.10%
CAM	4-Oct-13 Fail Bypass (0.62, 0.61)	15500.5	15366	0.88	16136.9	15976	1.01	
	Bypass leak limit = 0.60							
SFE	4-Oct-13 Pass	15790.7	15418	<u>2.42</u>	14277.2	14029	1.77	

Table 3: Comparison of Audit and Site Flowmeter Audit Readings

TEOM 1400DF Audit and Site flowmeter radings All flows Qa, Ipm						Site Flowmeter: sn682*					
		Inlet			Fine cha	nnel		Coars	Coarse channel		
<u>Site</u>	<u>Date</u>	<u>Audit</u>	<u>Site</u>	<u>% diff</u>	<u>Audit</u>	<u>Site</u>	<u>% diff</u>	<u>Audit</u>	<u>Site</u>	<u>% diff</u>	
XAL	2-Oct-13	16.59	16.67	0.5	2.99	3.16	<u>5.7</u>	1.78	1.96	<u>10.1</u>	
TLA	2-Oct-13	16.30	16.39	0.6	2.94	3.01	2.4	1.66	1.54	<u>-7.2</u>	
SAG	2-Oct-13	16.80	16.86	0.4	3.02	3.05	1.0	1.78	1.8	1.1	
HGM	3-Oct-13	16.90	16.85	-0.3	3.07	2.99	-2.6	1.71	1.69	-1.2	
PED	3-Oct-13	16.66	16.62	-0.2	3.02	2.94	-2.6	1.65	1.62	-1.8	
MER	3-Oct-13	16.52	16.51	-0.1	3.03	2.93	-3.3	1.7	1.66	-2.4	
CAM	4-Oct-13	16.60	16.51	-0.5	3.05	2.96	-3.0	1.67	1.65	-1.2	
SFE	4-Oct-13	16.33	16.18	-0.9	3.05	2.96	-3.0	1.67	1.63	-2.4	
					* deltaCa	I sn980	site flowmet	er used for	2 Oct 7	EOM audits	

Note: Differences greater than 4% between audit and site flow standards are considered larger than normal, and are shown underlined

These results are NOT sampler audit results.

The CAM bypass flow leak test failed with a value of 0.62 and 0.61 for base and reference channels respectively. The tolerance is 0.60, based on the manufacturer's limit. While this test was out of normal limits, it does not mean that data quality for this instrument is compromised. First, the test result is just slightly out of tolerance. Second, these results are for the bypass flow channel, and not either the PM2.5 or PM-coarse measurement channels. This leak test result should be followed up with preventative maintenance however, since it is an indication of a minor problem.

Other audit observations and recommendations.

While not technically part of the audit, the following are observations made during the audit that may be useful to SIMAT staff.

Site temperature:

The temperature inside some of the site shelters was 16 to 17 degrees C, too cold for proper operation of instruments, and potentially outside of the typical 20 - 30 C range required for FEM/FRM operation of some analyzers. The shelter temperature during the warmer seasons should be higher than the highest expected seasonal hourly dew point temperature, to avoid condensation in sample lines and inside analyzers. For the rainy season, a shelter setpoint of 23 to 25 degrees C is preferable. The shelter temperature at sites with FDMS or SES-TEOMs should not exceed 25 C because the TEOM filter temperature is 30 C and could become unstable if shelter temperature became too high.

Flow Standards:

Site flow standards are now either the BGI tetraCal or deltaCal. The BGI triCal (which does not have an external temperature sensor) is no longer being used for field site slow measurements, per recommendations of the 2012 audit.

Even with the external temperature sensor, it is important to keep the flowmeter out of direct sun as much as possible, since that can still cause short-term temperature fluctuations. Care must be taken when working on a roof in mid-day sun – the flowmeter must be left [out of its case] in the shade prior to use long enough to be sure that its temperature is stable. 3 degrees C is 1% flow error, so this is an important factor.

The SIMAT flow meter issues experienced during the 2012 audit have been resolved. The two field flow standards used appear to be in reasonably good agreement with the audit flow standard.

tetraCal 682 = August 15, 2012 / by Brian DeVoe Jr, BGI deltaCal 980 = August 15, 2012 / by Brian DeVoe Jr, BGI

The BGI calibration certificates for these calibrations and a summary of changes to the internal

SIMAT flowmeter QC procedures implemented after the 2012 audit are included in Appendix B.

The older TEOMs may benefit from updates to the instrument's software. Many FDMS TEOMs have software version 1.51; 1.57 is the current revision.

The Camarone site has a large tree close to the sampler inlets, and the tree is much taller than the inlets. While the tree is not likely to affect PM2.5 data, SIMAT staff report that there are plans to remove the tree since it could affect ozone and PM10 data and does not meet normal distance and height requirements for inlet siting.

During the audit, other aspects of the network operation were informally reviewed, both at field sites and at the SIMAT laboratory. Overall, the operation of the network is very robust, with strong QA/QC systems in place. Interactions with SIMAT staff indicated a high level of skill and understanding of the network's systems. The successful audit results reported here are a direct result of the efforts and skills of SIMAT staff.

Appendix A: Audit flow standards

Audit Flow and TEOM K0 standards:	<u>Site Flow Standards</u> BGI tetraCal, sn 682	"tetraCal'	external temp sensor	
Flowmeter BGI tetraCal, sn304	BGI DeltaCal, sn980		internal temp sensor	
Last calibration: 9 Aug 2013 (BGI)				
Audit K0 Teom filters:				

#	Date	Mass [g]
01	Sept. 2013	0.097569
02	Sept. 2013	0.097751

TEOM K0 audit filters were weighed at two different laboratories: Maine Dept. of Environmental Protection and the Harvard School of Public Health (Boston). The two laboratory values (Maine-DEP, HSPH) for audit filter # 01 are: 0.097569 and 0.097569. Values for # 02 are: 0.097753 and 0.097749; the mean of these 2 values was used.

Note: site flow standard readings are not used for audit results but are useful for understanding the source of audit flow error

The factory flow certification for the audit flowmeter (BGI tetraCal s/n 304) on 9August 2013 is included below.

BGI INCORPORATED 58 GUINAN STREET WALTHAM, MA 02451

NIST Traceable Calibration Facility, ISO 9001:2008 Registered

CERTIFICATE OF CALIBRATION - NIST TRACEABILITY

(Refer to instruction manual for further details of calibration)

tetraCal Serial Number: 304

DATE: 9-Aug-13

Calibration Operator: Sean Crossman

Critical Venturi Flow Meter: Max Uncertainity = 0.346% Serial Number: 1 CEESI NVLAP NIST Data File 04BGI151 Serial Number: 2 CEESI NVLAP NIST Data File 04BGI152 Serial Number: 3 CEESI NVLAP NIST Data File 04BGI153

Room Temperature: Uncertaini Brand: Ever-Safe Serial Nu NIST Traceability No. 516837	Room Temperature:	22.3 C			
tetraCal:					
Ambient Temperature (set):	22.3 C				
Aux (filter) Temperature (set):	С				
S/N D4310002 NIST Traceable (Princo Primary Standard Model tetraCal: Barometric pressure (set):	453 S/N W12537) Cert 756 mm of				
Results of Venturi Calibration					
flow Rate (Q) vs. Pressure Drop (ΔP).		Where: Q=Lpm, ΔP= Cm of H2O			

No. 1 Q = 5.33163 AP ^ 0.51645 No. 2 Q = 1.16173 ΔP ^ 0.52404 No. 3 Q = 0.21437 ΔP ^ 0.54280

Overall Uncertainty: 0.35%

Date Placed In Service

(To be filled in by operator upon receipt)

Recommended Recalibration Date (12 months from date placed in service)

Revised: July 2012

	k a Tetra Cal			9-Aug-13	Sean Cro			
6 - 30.00 VER.	Lpm 3,41P					BP= Room Temp=	756 22.3	mm of Hg C
	ana na manga kanga kangana kangana.					rtoom romp-	22.0	0
	llowable error	at any flow	rate is .75°	%.				
Serial No.	304							
Reading		Q						
Abs. P		760/20	QA	QA				
Crit. Vent.	Crit. Vent.	Flow	Flow	TriCal				
mm of Hg	TEMP	Lpm	Lpm	Indicated	% Error			
214.65	21.2	8.34	8.45	8.48	0.30			
414.88	21.2	16.31	16.53	16.46	-0.41		Average %)
693.2	21.2	27.39	27.75	27.81	0.22		0.04	

To Check a Tetra Cal	BP=	755.5	mm of Hg
1.20 - 6.00 Lpm	Room Temp=	22.3	С

Reading		Q				
Abs. P		760/20	QA	QA		
Crit. Vent.	Crit. Vent.	Flow	Flow	TriCal		
mm of Hg	TEMP	Lpm	Lpm	Indicated	% Error	
153.8	21.2	1.70	1.72	1.718	-0.26	
331.6	21.2	3.72	3.77	3.75	-0.51	Average %
484.0	21.2	5.45	5.52	5.53	0.11	-0.22

To Check a Tetra Cal 0.10 - 1.20 Lpm	BP= Room Temp=	755.5 22.3	0	

Reading Abs. P Crit. Vent.	Crit. Vent.	Q 760/20 Flow	QA Flow	QA TríCal		
mm of Hg	TEMP	Lpm	Lpm	Indicated	% Error	
173.54	21.2	0.305	0.309	0.31	0.39	
368.25	21.2	0.679	0.689	0.684	-0.71	Average %
579.03	21.2	1.085	1.100	1.105	0.42	0.03

<u>Appendix B:</u> Summary of changes to the internal SIMAT flowmeter QC procedures implemented after the 2012 audit, and site flowmeter factory calibrations.

As a result of the audit conducted in August 2012, important differences in flow readings were found for the various reference calibrators used in the flow calibration of the continuous and manual samplers. After identifying the origin of these deviations, the auditor recommended actions for the immediate calibration of the reference equipment. As a result, the Dirección de Monitoreo Atmosférico sent to the factory the following equipment for calibration in August 2012: deltaCal s/n 980, deltaCal s/n 984, TetraCal s/n 682.

The calibrated equipment was received back in the Laboratory in November of 2012 and a comparison was conducted for the different instruments that were in use against the equipment just received. Since January 2013 the QA/QC staff has been reviewing flows for the automatic monitors using the tetraCal s/n 682 as a reference, making the necessary flow adjustments in the field PM continuous monitors. For FRM samplers, corrective action was not performed, because there were no significant differences with the field equipment.

During February 2013 an internal audit was performed on the flow of FRM samplers, and the results of the audit showed a deviation of -0.3 lpm, which was within the tolerance range of the audit. In September 2013, a second internal flow audit was performed and it was observed that the difference was still -0.3 lpm, and even though this difference was within the tolerance range, an adjustment in the flow for all the samplers was recommended.

In September 2013 the QA/QC staff conducted a comparison for the different flow calibrators used in the field and in the laboratory, and the results indicate a good agreement in all the instruments, with a difference of \pm 0.1 lpm, except for the deltaCal s/n 360, used for verification of the FRM samplers, which showed a difference of -0.3 lpm. As a corrective action the QA/QC staff recommended the immediate replace of the deltaCal.

In summary, the actions that were implemented derived from the audit of 2012 were:

- the use of the old triCal calibrator for field checking and calibration was discontinued,
- bimonthly flow verifications for continuous field monitors,
- quarterly flow verifications for FRM samplers,
- annual factory calibration of one tetraCal, which will be used as reference,
- annual comparison of flow measurement calibrators against the reference equipment.

The factory flow certification for the two site flowmeters used during the 2013 audits reported here are included below.

BGI INCORPORATED 58 GUINAN STREET WALTHAM, MA 02451

NIST Traceable Calibration Facility, ISO 9001:2008 Registered

CERTIFICATE OF CALIBRATION - NIST TRACABILITY

(Refer to instruction manual for further details of calibration)

tetraCal Serial Number: 000682 Calibration Operator: Brian DeVoe Jr. DATE 15-Aug-12

Critical Venturi Flow Meter: Max Uncertainty = 0.346% Serial Number: 1 *CEESI NVLAP NIST Data File 04BGI151* Serial Number: 2 *CEESI NVLAP NIST Data File 04BGI152* Serial Number: 3 *CEESI NVLAP NIST Data File 04BGI153*

Room Temperature : Uncertainty = 0.071% Room Temperature: 21.7 C

Brand: *Ever-Safe* Serial Number: 016076 NIST Traceability No. 516837 tetraCal: Ambient Temperature (set): 21.7 C Aux (filter) Temperature (set): C

Barometric Pressure and Absolute Pressure

Vaisala Model PTB330(50-1100) Digital Accuracy: 0.03371% S/N D4310002 NIST Traceable (Princo Primary Standard Model 453 S/N W12537) Certificate No. P-7485 tetraCal: Barometric Pressure (set): **755** mm of Hg

Results of Venturi Calibration

Flow Rate (Q) vs. Pressure Drop (ΔP).

Where: Q=Lpm, $\Delta P=Cm$ of H_2O

No. 1 Q= $5.37644 \Delta P \land 0.52107$ No. 2 Q= $1.14001 \Delta P \land 0.52616$ No. 3 Q= $0.21175 \Delta P \land 0.54239$

Overall Uncertainty: 0.35%

Date Placed In Service_____ (To be filled in by operator upon receipt)

Recommended Recalibration Date _____ (12 months from date placed in service)

Revised: March 2012

To Check a Tetra Cal 15-Aug-12 Brian DeVoe Jr. 6 - 30.00 Lpm BP= 755 mm of Hg VER. 3.37P Room Temp= 21.7 С Maximum allowable error at any flow rate is .75%. Serial No. 682 Reading Q Abs: P 760/20 QA QA Crit, Vent. Crit. Vent. Flow Flow TriCal mm of Hg TEMP Lpm Lpm Indicated % Error 21.2 189.56 7.36 7.45 7.48 0.43 418.2 21.2 16.47 16.67 16.58 -0.55 Average % 696.15 21.2 27.54 27.89 27.96 0.27 0.05 To Check a Tetra Cal BP= 755 mm of Hg 1.20 - 6.00 Lpm Room Temp= 21.2 С Reading Q Abs. P 760/20 QA QA Crit. Vent. Crit. Vent. Flow Flow TriCal mm of Hg TEMP Lpm Lpm Indicated % Error 166.5 21.1 1.84 1.86 1.86 -0.21 331.2 21.1 3.71 3.75 3.73 -0.64 Average % 491.6 21.1 5.54 5.60 5.61 0.26 -0.20 To Check a Tetra Cal BP= 755 mm of Hg 0.10 - 1.20 Lpm Room Temp= 21.2 С Reading Q Abs. P 760/20 QA QA Crit. Vent. Crit. Vent. Flow Flow TriCal mm of Hg TEMP Lpm Lpm Indicated % Error 193.37 21.0 0.343 0.346 0.346 -0.12 378.88 21.0 0.700 0.707 0.703 -0.63 Average % 576.28 21.0 1.080 1.092 1.095 0.31 -0.15

						UNIT	BP ≈ 766 m	m	
	k a Tetra Cal			15-Aug-12	BD	00-	700		
6 - 30.00 VER.	2.47					BP= Room Temp=		mm of Hg C	
	llourobte aver	at any flaur		N.				•	
Serial No.	llowable error 682	at any now	rate is .75	70.					
Reading		Q	,						•
Abs. P		760/20	QA	QA		• •			
Crit. Vent.	Crit. Vent.	Flow	Flow	TriCal	6/ FT	· ·			
mm of Hg 211.5	ТЕМР 20.9	Lpm 8.21	Lpm 8.30	Indicated 7.93	% Error -4.45				
416.5	20.9	16.36	16.54	16.17	-2.22		Average %		
696	20.9	27.47	27.77	27.48	-1.04		-2.57		
			· .						
						· · ·			
		•							
To Chec	k a Tetra Cal					BP=	756	mm of Hg	
1.20 - 6.0						Room Temp=		°C	
							:		ŵ.
		_							
Reading Abs. P		Q 760/20	QA	QA					
Crit. Vent.	Crit. Vent.	Flow	Flow	TriCal	્ય				
mm of Hg	TEMP	Lpm	Lpm	Indicated	% Error				
155.0	21.0	1.71	1.73	1.702	-1.55				
336.5	21.0	3.77	3.81	3.74	-1.81		Average %		
501.0	21.0	5.63	5.69	5.63	-1.13		-1.50		
								-	
	a Tetra Cal					BP=	756	mm of Hg	
0.10 - 1.2	и црт				1	Room Temp=	21.2	С	
		•							
Reading		Q							
Abs. P	An Val	760/20	QA	QA		,			
Crit. Vent. mm of Hg	Crit. Vent. TEMP	Flow Lpm	Flow Lpm	TriCal Indicated	% Error				
172	21.0	0.301	0.304	0.295	-2.97		•	· · · · ·	
369	21.0	0.680	0.686	0.66	-3.85		Average %		
576	21.0	1.078	1.088	1.058	-2.78		-3.20		
				· ·					

BGI INCORPORATED 58 GUINAN STREET WALTHAM, MA 02451

NIST Traceable Calibration Facility, ISO 9001:2008 Registered

delta Cal

CERTIFICATE OF CALIBRATION - NIST TRACEABILITY

(Refer to instruction manual for further details of calibration)

deltaCal Serial Number: 980

DATE: 15-Aug-12

Calibration Operator: Brian DeVoe Jr.

Critical Venturi Flow Meter: Max Uncertainity = 0.346% Serial Number: 1 *CEESI NVLAP NIST Data File* 04BGI151 Serial Number: 2 *CEESI NVLAP NIST Data File* 04BGI152 Serial Number: 3 *CEESI NVLAP NIST Data File* 04BGI153 Serial Number: 4 *CEESI NVLAP NIST Data File* 02BGI004

Room Temperature	: Uncertainit	Room Tei	22 C		
Brand: Ever-Safe	Serial Nun	nber: 016076			
NIST Traceability No. 516837		and the second	5 C.		
deltaCal:				• •	
Ambient Temperatur	e (set):	22 C			
Aux (filter) Temperat		22 C			. ·
				i na na na	· · · · · · · · · · · · · · · · · · ·

Barometric Pressure ans Abso	lute Pressure
Vaisala Model PTB330(50-1100)	Digital Accuracy: 0.03371%
S/N D4310002	
NIST Traceable (Princo Primary Standard Model	453 S/N W12537) Certificate No. P-7485
deltaCal:	
Barometric pressure (set):	755 mm of Hg

Results of Venturi Calibration

Flow Rate (Q) vs. Pressure Drop (ΔP).

Where: Q=Lpm, Δ P= Cm of H2O

Q= 3.84531 ΔP ^ 0.52771

Overall Uncertainty: 0.35%

Date Placed In Service

(To be filled in by operator upon receipt)

Recommended Recalibration Date (12 months from date placed in service)

Revised: July 2012

— To Check a deltaCal				·	15-Aug-12	Brian DeVoe	Jr.	
	1.5-19.5		VER 3.37P			BP=	755	mm of Hg
	Maximum all		at any flow r	ate is .75%.	R	oom Temp=	22	C
	Serial No.	980			۳ ۱			
					i. Se			· ·
	Reading		Q					
	Abs. P		760/20	QA	QA			· · · · · · · · · ·
	Crit. Vent.	Crit. Vent.	Flow	Flow	deltaCal			
	mm of Hg	Temp	Lpm	Lpm	Indicated	% Error		
#2	245.11	21.00	2.74	2,77	2.78	0.26		
	478.09	21.00	5.38	5.45	5.43	-0.44	~	
# 1	242.79	21.00	9.47	9.60	9.55	-0.51		
	412.28	21.00	16.22	16.44	16.43	-0.05		
	482.23	21.00	19.01	19.26	19.36	0.51		
	•		- - -	•	Average %	-0.04		•

То	Check a delta	Cal	100 D 0 20		15-Aug-12	BD		
	1.5-19.5		ven 2.30			BP=	755.5	mm of Hg
	Maximum all	owable error	at any flow n	ate is .75%.	* R	oom Temp=	21.7	C
	Serial No.	980						
.	Reading Abs. P Crit. Vent. mm of Hg	Crit. Vent. Temp	Q 760/20 Flow Lpm	QA Flow Lpm	QA deltaCal Indicated	% Error	• • •	
#2	193	21.00	2.14	2.17	2.15	-0.83		
	486	21.00	5.47	5.53	5.51	-0.39		
#1	251.5	21.00	9.81	9,93	9.82	-1.08		
	419.8	21.00	16.51	16.70	16.46	-1.46		
	488.2	21.00	19,23	19.46	19.49	0.17	2. 2. 4.	

-0.72 Average %

Appendix C: PM instrument audit logs.

1405DF TEOM Audit form Date: 2007 13 Auditor: 6-000							
Site: XAC Site Operator: MAMA CAMPOS Shelter T (C): 16.5 (1099er)							
Instrument Model: <u>1405DF</u> Serial #: <u>211841011</u> Firmware: <u>1.51</u> FEM sticker?							
Instrument Time: $\frac{12.04}{CST}$ (CST) Site Datalogger time: $\frac{12.02}{CST}$ Pump vac: $\frac{0.29}{CST}$ atm							
Instrument ambient readings: T:24/2C Dewpoint 3.2 C BP:0.750 atm RH: 26 %							
Instrument temperatures (C). Cap: $3^{0,00}$ Case: $3^{0,00}$ PM2.5 air: $3^{0,00}$ PM-C air: $3^{0,00}$							
Instrument flows (display). PM2.5: 3.00 PM-C: 1.67 Bypass: 12.00 Total: 16.67 lpm, Qa							
Flow Control. (confirm settings) Active (25 C, 1 atm): _/ Actual conditions: _/							
<u>KO Audit.</u> Audit filter ID: $\frac{\#01}{1000}$ Mass: 0.09756^{9}_{g} Cal. Date: <u>SEPT 2013</u> MAWE DEP							
Instrument K0: PM2.5 15064 PM-C 15962							
Audit K0: PM2.5 $\frac{15148}{5}$; % diff= 0.56 PM-C $\frac{16087.5}{5}$; % diff= 0.79							
<u>Flow Audit.</u> (lpm) BG(Audit Flowmeter Model: <u>6-tra Ga</u> S/N: <u>304</u> T-amb: <u>24.6</u> C BP: <u>580, 5</u> mm Hg							
Site Flowmeter Model: $\frac{\beta \epsilon}{\beta \epsilon} \frac{1}{\beta \epsilon} $							
Inlet (total) flow. Audit: $\frac{16.57}{6.57}$ Qa, $\frac{12.68}{2}$ Qs Site: $\frac{16.67}{2}$ Qa, $\frac{12.77}{2}$ Qs							
PM2.5 (bypass and CM capped). Audit: $\frac{799}{667}$ Qa, $\frac{2.28}{2.77}$ Qs Site: $\frac{31/6}{2}$ Qa, $\frac{2.38}{2.38}$ Qs $T=24.5$							
PM-C (bypass & PM2.5 capped). Audit: 1.78 Qa, 1.36 Qs Site: 1.96 Qa, 1.50 Qs $T=23.7$							
FDMS Module.Dryer T (fine): 20.27 Dryer T (coarse): 20.44 C. $PRED$ $Noise$ Dryer DP (fine): -9.76 Dryer DP (coarse): 20.34 C. $PM2.5$ 257.384 PM cooler (fine): 3.96 PM cooler (coarse): 4.02 C. $PM-C$ 268.842 $,004$							
Leak Test. Position: Base Zero Ref. Zero							
PM2.5: 0.01 0.21 0.00 0.21 (Limit: 0.15)							
PM coarse: 0.00 0.61 0.00 0.61 0.00 0.61 (Limit: 0.15) Bypass: 0.04 0.26 0.03 0.26 (Limit: 0.6)							
Bypass: 0.04 0.26 0.03 0.26 (Limit: 0.6)							

Inlet Cleaning Dates. PM10: 27 SEPT 13 Virtual Impactor: 27 SEPT 13

-

1405DF TEOM Audit form Date: 2007 13 Auditor: 6. all
Site: <u>TLA</u> Site Operator: <u>MANUEL CAMPOS</u> Shelter T (C): <u>9</u>
Instrument Model: $\underline{/405DF}$ Serial #: $\underline{204730904}$ Firmware: $\underline{1.51}$ FEM sticker? $\underline{N0}$
Instrument Time: 1533 (CST) Site Datalogger time: 1534 Pump vac: 0.27 atm
Instrument ambient readings: T:255 C Dewpoint: 3,3 C BP:0.735 atm RH: 24 %
Instrument temperatures (C). Cap: 30.00 Case: 30.00 PM2.5 air: 30.00 PM-C air: 30.00
Instrument flows (display). PM2.5: 3.00 PM-C: 1.67 Bypass: 12.00 Total: 16.68 lpm, Qa
Flow Control. (confirm settings) Active (25 C, 1 atm): Actual conditions:
KO Audit. Audit filter ID: <u>#01</u> Mass: 0,097569 g Cal. Date: <u>SEPT'13 MAINE</u> DEP
Instrument K0: PM2.5 <u>15476</u> PM-C <u>14369</u>
Audit K0: PM2.5 $\frac{15740}{5740}$; % diff= $\frac{1}{77}$ PM-C $\frac{14515.9}{579}$; % diff= $\frac{1}{202}$
<u>Flow Audit.</u> (lpm) B61 Audit Flowmeter Model: <u>Letva Car</u> S/N: <u>304</u> T-amb: <u>25,7</u> C BP: <u>578</u> mm Hg
Site Flowmeter Model: Delta CAL S/N: <u>980</u> T-amb: <u>25.3</u> C BP: <u>578</u> mm Hg
Inlet (total) flow. Audit: $\frac{16.39}{16.39}$ Qa, $\frac{12.38}{12.38}$ Qs Site: $\frac{16.39}{12.45}$ Qs
PM2.5 (bypass and CM capped). Audit: 2.94 Qa, 2.73 Qs Site: 3.01 Qa, 2.77 Qs
PM-C (bypass & PM2.5 capped). Audit: $\frac{1.66}{1.66}$ Qa, $\frac{1.26}{1.26}$ Qs Site: $\frac{1.54}{2}$ Qa, $$ Qs $T=26^{-3}$
<u>FDMS Module.</u> Dryer T (fine): $\frac{12.7}{2.7}$ Dryer T (coarse): $\frac{12.7}{C}$ C.
FDMS Module.Dryer T (fine): $/2.7$ Dryer T (coarse): $l2.7$ C.Mg NOISEDryer DP (fine): $\overline{8.6}$ Dryer DP (coarse): $\overline{11.4}$ C. $PM2.5.005$ 267.632 PM cooler (fine): 10.0 PM cooler (coarse): 10.0 C.
PM cooler (fine): (0, 0) PM cooler (coorres): (0, 0) Charles (coorre
The cooler (line). $\underline{-270}$ Field cooler (coarse). $\underline{-270}$ C:
Leak Test. Position: Base Zero Ref. Zero
PM2.5: 0.00 0.18 0.00 0.18 (Limit: 0.15)
PM coarse: $0,00$ $-0,17$ $0,00$ $-0,17$ (Limit: 0.15)
Bypass: 0.37 0.41 0.28 0.41 (Limit: 0.6)

Inlet Cleaning Dates. PM10: 20 SEPT 13 Virtual Impactor: 20 SEPT 13

	SA	G AG	USTIN			\sim		
	1405DF TEC	M Audit form	n Date:	2007	<u>13</u> Aud	itor:	a, All	
GA	Site: SAH	A Aver	STINE Site C	Operator: <u>M</u>	ANVER G	AMPOS	Shelter T (C): 2217_{6}	
	Instrument M	odel: 1405	DF Serial #:	2113410	010 Fi	rmware: <u>/.</u>	SI FEM sticker?	
	Instrument Ti	me: <u>0912</u> (CST) Site Da	atalogger time	<u>0910</u> Pr	ump vac: <u>C</u>		-
	Instrument an	nbient readings	s: T: <u>/5/</u> C	Dewpoint:	<u>//.7</u> С ВР	: <u>0,76/</u> atm	RH: 79% (2215	
	Instrument ter	mperatures (C)	. Cap: <u>30,0</u>	Case: $30,0$	2 PM2.5 air:	30,60 PM	-Cair: <u>30,00</u> T-STAT TEMP)	
	Instrument flo	ows (display).	PM2.5: <u>3,0</u>	<u>о</u> рм-с: <u>//</u>	67 Bypass:	12,0 Tot	al: <u>16.67</u> lpm, Qa	
	Flow Control	. (confirm se	ttings) Activ	e (25 C, 1 atm): <u>/</u> Actu	al condition	s:	
	<u>K0 Audit.</u>	Audit filter I	D:O(Ma	ass: <u>97,569</u>	g Cal. Dat	te: <u>SEPT ZO13</u> MAINE DEP	
		Instrument K	0: PM2.5 <u>/</u> 5	беі рм-с	17022		4 1+5 PH	
		Audit K0:	PM2.5 15	<u>048;</u> %diff	= <u>0,09</u> PM	-C <u>16859,</u>	<u>7;%diff=0295</u>	
	<u>Flow Audit.</u> Audit Flowm	(lpm) eter Model:	t tak sin:	304	T-amb: <u>/ 7</u>	<u>Э</u> с в	P: $584,5$ mm Hg	
¥	Site Flowme	ter Model:	DELTA CALS/N:	980	T-amb: <u>49</u>	SC B	P: 572/,5 mm Hg	
,	Inlet (total) fl		Audit	: <u>16.88</u> Qa, 1	13.20 Qs	Site: 16	<u>86</u> Qa, <u>13.31</u> Qs	
	PM2.5 (bypas	ss and CM cap	$T_A = 19$ ped). Audit	8 : <u>3.02</u> Qa, 4	<u>2,37</u> Qs	Site: <u>3. 0</u>	<u>5</u> Qa, <u>Z.40</u> Qs	
	PM-C (bypas	s & PM2.5 cap	ped). $T_{A} = Z_{O}$	7 :: <u>1. 78</u> Qa, 1	1.40 Qs		<u>O</u> Qa, <u> </u>	
¥	SITE FLOW	-	DT WORKIN		•	- 1	UNDET RANGE	
	FDMS Modu				er T (coarse): ²		FREQ MOISE	
		Dryer	DP (fine): l_{ι}	<u>SS</u> Drye	er DP (coarse):	<u>3,94</u> C.	1 · · ·	
		PM c	ooler (fine): <u>//</u>	7 <u>,0</u> PM (cooler (coarse)	<u>/0, 0</u> C.	PM-C NOF YET STABILIZED.	
	Leak Test.	Position:	Base	Zero	<u>Ref.</u>	Zero		
		PM2.5:	0.04	0,25	0.05	0.24	(Limit: 0.15)	
		PM coarse:	0.00	0,16	Ô 4 OO	0.16	(Limit: 0.15)	
		Bypass:	0.00	0.24	0,00	0,24	(Limit: 0.6)	
	Inlet Cleaning	<u>g Dates.</u> PM	10: <u>//SEP</u>	/ <u>3</u> Virtu	ual Impactor: <u>/</u>	ISEP 1	3	

1405DF TEOM Audit form Date: <u>309713</u> Auditor: <u>6. alle</u>
Site: MER Site Operator: <u>MANVEL CAMPOS</u> Shelter T (C): <u>21.5</u>
Instrument Model: <u>14050F</u> Serial #: <u>204390 903</u> Firmware: <u>(151</u> FEM sticker? <u>NO</u>
Instrument Time: $\frac{0904}{1000}$ (CST) Site Datalogger time: $\underline{0902}$ Pump vac: $\underline{0.24}$ atm
Instrument ambient readings: T: $\frac{18.5}{5}$ C Dewpoint: $\frac{11.8}{5}$ C BP: 0.735 atm RH: $\frac{73}{5}$ %
Instrument temperatures (C). Cap: 30.0 Case: 30.00 PM2.5 air: 30.00 PM-C air: 30.00
Instrument flows (display). PM2.5: 3.50 PM-C: 1.67 Bypass: 12.02 Total: 16.70 lpm, Qa
Flow Control. (confirm settings) Active (25 C, 1 atm): 📈 Actual conditions: 📈
K0 Audit.Audit filter ID: $\#0!$ Mass: 0.097569 g Cal. Date: $SEVT 13 - MA: NE DEP$ SEE SEEInstrument K0: PM2.5 $IS789$ PM-C $I4249$ It HSPH $Reverse SideSidePM2.5 IG017.8; % diff= I.45 PM-C I4572; % tiff= 7.77$
Flow Audit. (lpm)BGHAudit Flowmeter Model: $\underline{Fotra Cac}$ S/N: $\underline{304}$ T-amb: $\underline{20.0}$ CBP: $\underline{583.5}$ mm Hg
Site Flowmeter Model: $\frac{761}{DETTA}$ Gril S/N: $\frac{970}{7}$ T-amb: $\frac{267}{C}$ BP: $\frac{583.5}{5}$ mm Hg
Inlet (total) flow. Audit: $\frac{16.52}{92}$ Qa, $\frac{12.92}{92}$ Qs Site: $\frac{16.51}{92}$ Qa, $\frac{12.87}{92}$ Qs
PM2.5 (bypass and CM capped). Audit: $\frac{7}{16.51}$ Qa, $\frac{2.34}{2.87}$ QsSA4 Site: 2.93 Qa, 2.29 Qs $7=20.6$
PM-C (bypass & PM2.5 capped). Audit: 1.70 Qa, 1.32 Qs Site: 1.66 Qa, 1.30 Qs $7=20.7$
FDMS Module.Dryer T (fine): 20.9 Dryer T (coarse): 21.0 C.MOISE FREQDryer DP (fine): 5.3 Dryer DP (coarse): 4.4 C. PM_{25} ,005 268.825PM cooler (fine): 4.01 PM cooler (coarse): 4.03 C. PM_{10} , 643 256,094
Leak Test. Position: Base Zero Ref. Zero

eak Test.	Position:	<u>Base</u>	Zero	<u>Ref.</u>	Zero	
	PM2.5:	0,00	0.17	6.00	0117	(Limit: 0.15)
• •	PM coarse:	0,00	-0,17	0,00	-0.17	(Limit: 0.15)
	Bypass:	0,05	0,39	0,01	0.39	(Limit: 0.6)

Inlet Cleaning Dates. PM10: 23 SEPT 13 Virtual Impactor: 23 SEPT 13

OVER

REPEAT KO W/ AUDIT FUTER #02 SEPT 13 MAINE DEP 0.097751 g. & HSPH PM25515789 PM-C14249 INSTRAME and Ko: PMZ.5 15959.8 PM-C 14548.2 AUDITKo : PM25 % D = 1.08 PM-C 90D = 210 and the second 1. 1911年1月1日(1911年)。 1911年日月日日(1911年) Sector as a fi

1405DF TEOM Audit form Date: 3007 13 Auditor: 6 all LOGGER T.
Site: <u>HOSDF HGM</u> * Site Operator: <u>MANUEL CAMPOS</u> Shelter T (C): <u>13</u> to 28 *
Instrument Model: <u>1405DF</u> Serial #: <u>21119/009</u> Firmware: <u>1.55</u> FEM sticker? <u>4</u> es
Instrument Time: <u>//3/</u> (CST) Site Datalogger time: <u>//30</u> Pump vac: <u>0.27</u> atm
Instrument ambient readings: T: 21.6 C Dewpoint: 11.1 C BP.0.736 atm RH: 51 %
Instrument temperatures (C). Cap: $30, 00$ Case: $30, 00$ PM2.5 air: $30, 00$ PM-C air: $30, 00$
Instrument flows (display). PM2.5: 3.00 PM-C: 1.67 Bypass: 12.00 Total: 16.69 Ipm, Qa
Flow Control. (confirm settings) Active (25 C, 1 atm): _ C Actual conditions: _ C
KO Audit. Audit filter ID: <u>401</u> Mass: 0,097569g Cal. Date: SEPT 13 -MAINE DEP
Instrument K0: PM2.5 14782 PM-C 16447
Audit K0: PM2.5 <u>14870,7;</u> % diff= <u>0.60</u> PM-C <u>16495</u> ; % diff= <u>0.29</u>
<u>Flow Audit.</u> (lpm) BG4 Audit Flowmeter Model: <u>tervaCan</u> S/N: <u>304</u> T-amb. <u>24.2</u> C BP: <u>581.5</u> mm Hg
Site Flowmeter Model: <u>tetra Con</u> S/N: <u>682</u> T-amb: <u>24.2</u> C BP: <u>582</u> mm Hg
Inlet (total) flow. Audit: $\frac{16.90}{2.90}$ Qa, $\frac{12.96}{2.96}$ Qs Site: $\frac{16.85}{2.93}$ Qa, $\frac{12.93}{2.93}$ Qs
PM2.5 (bypass and CM capped). ^A Audit: $\frac{16+35}{16+35}$ Qa, $\frac{2\cdot34}{12\cdot93}$ Qs Site: $2\cdot99$ Qa, $2\cdot29$ Qs ^{T= 2.5.1}
PM-C (bypass & PM2.5 capped). Audit: 1.71 Qa. 1.31 Qs Site: 1.69 Qa, 1.29 Qs
FDMS Module. Dryer T (fine): $\frac{1519}{1519}$ Dryer T (coarse): $\frac{15.8}{5.8}$ C. NOISE FREQ $\mathcal{P}^{M2.5}$.006 260.715 Dryer DP (fine): $\frac{16.7}{15000000000000000000000000000000000000$
Dryer DP (fine): $\frac{-6.7}{-6.7}$ Dryer DP (coarse): $\frac{17.5}{-7.5}$ C. pm-c .008 272, 912
PM cooler (fine): $\frac{4.05}{100}$ PM cooler (coarse): $\frac{4.05}{100}$ C.

<u>Leak Test.</u>	Position:	Base	Zero	<u>Ref.</u>	Zero	
	PM2.5:	0.04	0.22	0,02	6,23	(Limit: 0.15)
	PM coarse:	0.05	0,25	0,63	0,26	(Limit: 0.15)
	Bypass:	0,00	0.32	0,00	<u> 6.32</u>	(Limit: 0.6)

Inlet Cleaning Dates. PM10: 23 SEPT 13 Virtual Impactor: 23 SEPT 13

¥

HOSPITH GENERAL MEXICO. * SITE AIR CONDX SETTING CHANGED. * NOW 23C.

1405DF TEOM Audit form Date: <u>30713</u> Auditor: <u>6.000</u>
Site: <u>PED</u> Site Operator: <u>MANUEL GAMPOS</u> Shelter T(C): <u>21</u>
Instrument Model: <u>405DF</u> Serial #: <u>204770905</u> Firmware: <u>1.51</u> FEM sticker? <u>N0</u>
Instrument Time: $\frac{1441}{(CST)}$ Site Datalogger time: $\frac{1440}{Pump vac}$ Pump vac: $\frac{0.35}{2}$ atm
Instrument ambient readings: T: 25.1 C Dewpoint: 5.6 C BP 0.747 atm RH: 29 %
Instrument temperatures (C). Cap: 30.00 Case: 30.00 PM2.5 air: 30.00 PM-C air: 30.00
Instrument flows (display). PM2.5: 3.00 PM-C: 167 Bypass: 12.00 Total: 16.68 Ipm, Qa
Flow Control. (confirm settings) Active (25 C, 1 atm):Actual conditions:
KO Audit. Audit filter ID: #-01 Mass: 0.097569 g Cal. Date: SEPT. 13 MAME DEP
Instrument K0: PM2.5 $\frac{15614}{15614}$ PM-C $\frac{14320}{14320}$
Audit K0: $PM2.5 \underline{15885}; \% \text{ diff} \underline{1.74} PM-C \underline{14535.3}; \% \text{ diff} \underline{1.50}$
<u>Flow Audit.</u> (Ipm) BG1 Audit Flowmeter Model: <u>Cetra Gr</u> S/N: <u>304</u> T-amb: <u>27.6</u> C BP: <u>573</u> mm Hg
Site Flowmeter Model: $Eetra Gar S/N: 682$ T-amb: $Z8rO C$ BP: 573 mm Hg
Inlet (total) flow.Audit: 1666 Qa, 12.44 QsSite: 1662 Qa, 12.40 QsPM2.5 (bypass and CM capped).Audit: 3.02 Qa, 2.25 QsSite: 2.94 Qa, 2.20 Qs
PM2.5 (bypass and CM capped). Audit: 3.02 Qa, 2.25 Qs Site: 2.94 Qa, 2.20 Qs 2.72
PM-C (bypass & PM2.5 capped). Audit: $l_1 l_2 \leq Qa$, $l_1 \geq 24$ Qs Site: $l_1 \leq 2Qa$, $l_1 \geq 2Qa$ TA = 26'5 TA = 25.7
FDMS Module. Dryer T (fine): 22.3 Dryer T (coarse): 22.1 C. Norse FREQ
FDMS Module.Dryer T (fine): 22.3 Dryer T (coarse): 22.1 C.Norse FREQ f_{M25} , 007 268.942 Dryer DP (fine): 6.8 Dryer DP (coarse): 6.4 C. p_{M-C} , 611 255.679
PM cooler (fine): 4.01 PM cooler (coarse): 4.03 C.

Leak Test.	Position:	Base	Zero	<u>Ref.</u>	Zero	
	PM2.5:	-0.01	0.16	02	00117	(Limit: 0.15)
	PM coarse:	02	0,28	-,03	0,28	(Limit: 0.15)
	Bypass:	0:07	0.24	0.05	0,24	(Limit: 0.6)

Inlet Cleaning Dates. PM10: 24 SEPT 13 Virtual Impactor: 24 SEPT 13

1405DF TEOM Audit form Date: 40913 Auditor: 6. Cll
Site: <u>CAM</u> CAMERONES Site Operator: <u>MANUEL CAMPOS</u> Shelter T(C): <u>16.3(1998)</u> TF,N)
$CAM \mathbf{A} R S = S$ Instrument Model: <u>1405 DF</u> Serial #: <u>211331010</u> Firmware: <u>155</u> FEM sticker? <u>V</u>
Instrument Time: 0856 (CST) Site Datalogger time: 0855 Pump vac: 0.24 atm
Instrument ambient readings: T: <u>IS.7</u> C Dewpoint: <u>10,6</u> C BP: <u>0,757</u> atm RH: <u>69</u> %
Instrument temperatures (C). Cap: 30, 60 Case: 36, 60 PM2.5 air: 30, 60 PM-C air: 30, 60
Instrument flows (display). PM2.5: 3, 07 PM-C: 1.67 Bypass: 1.99 Total: 16.71 Ipm, Qa
Flow Control. (confirm settings) Active (25 C, 1 atm): Actual conditions:
<u>KO Audit.</u> Audit filter ID: $\#$ O) Mass $0,097569$ g Cal. Date: <u>SEPT 13 - Marker</u> DEP
Instrument K0: PM2.5 <u>15366</u> PM-C <u>15976</u>
Audit K0: $PM2.5 / SSco.5; \% diff = 0.88 PM-C / 6/36.9; \% diff = /.6/$
$\frac{Flow Audit.}{Audit.} (lpm) \qquad BGG \qquad Audit. Flowmeter Model: Letva Ga S/N: 304 T-amb: 8.0 C BP: 584 mm Hg$
Site Flowmeter Model: <u>Hetra Can</u> S/N: <u>682</u> T-amb: <u>7.5</u> C BP: <u>584</u> mm Hg
Inlet (total) flow. Audit: $\frac{16,60}{2}$ Qa, $\frac{13,07}{2}$ Qs Site: $\frac{16,51}{2}$ Qa, $\frac{13,01}{2}$ Qs
PM2.5 (bypass and CM capped). $T = \frac{15.8}{\text{Audit:}} \frac{3.05}{0.05} \text{ Qa}, \frac{2.40}{0.05} \text{ Qs}$ Site: $\frac{2.96}{0.96} \text{ Qa}, \frac{2.33}{0.33} \text{ Qs}$
PM-C (bypass & PM2.5 capped) $T = \frac{19.2}{\text{Audit:}} \frac{1.67}{1.67} \text{ Qa}, \frac{1.31}{1.31} \text{ Qs}$ Site: $\frac{1.65}{1.65} \text{ Qa}, \frac{1.29}{1.29} \text{ Qs}$
FDMS Module.Dryer T (fine): $2/.6$ Dryer T (coarse): $2/.7$ C.NaseFREQPM2.5,006262.774Dryer DP (fine): $-3,27$ Dryer DP (coarse): -14.99 C.

Dryer DP (fine): 3,27Dryer DP (coarse): 14.99 C.PM-C ,016269,869PM cooler (fine): 4.05PM cooler (coarse): 3.96 C.

Leak Test.	Position:	Base	Zero	<u>Ref.</u>	Zero	
	PM2.5:	0.08	0.18	0.07	0,18	(Limit: 0.15)
	PM coarse:	0.07	0,22	0,06	0.22	(Limit: 0.15)
	Bypass:	0.62	0.28	0.61	0.28	(Limit: 0.6)
Inlet Cleaning Dates. PM10.25 SEPT 13 Virtual Impactor: 27 SEPT 13 27 GAA						

1405DF TEOM Audit form Date: 4 Oct 13 Auditor: 6. Celle Site: <u>SFE (SANTA Fe</u>) Site Operator: <u>MANUEL GOMPOS</u> Shelter T(C): <u>20.4</u> Instrument Model: $\underline{/405pf}$ Serial #: $\underline{204740904}$ Firmware: $\underline{/.51}$ FEM sticker? $\underline{N0}$ Instrument Time: $\frac{11.10}{10}$ (CST) Site Datalogger time: $\frac{11.12}{10}$ Pump vac: $\frac{0.21}{10}$ atm Instrument ambient readings: T: $\frac{19.1}{C}$ C Dewpoint: $\frac{9.0}{C}$ C BP: $\frac{0.727}{C}$ atm RH: $\frac{53.5}{S}$ % Instrument temperatures (C). Cap: 30,00 Case: 30,00 PM2.5 air: $30,\infty$ PM-C air: $30,\infty$ Instrument flows (display). PM2.5: 3, 03 PM-C: 167 Bypass: 12, 02 Total: 16,70 Ipm, Qa Flow Control. (confirm settings) Active (25 C, 1 atm): ____/ Actual conditions: ____ Audit filter ID: <u>#0/</u> Mass: 0,097569g Cal. Date: <u>SEPT, 13</u> MAINE DEP +HSPH, K0 Audit. Instrument K0: PM2.5 <u>*i*541</u>8 PM-C <u>14029</u> PM2.5 15790.7; % diff= 2.42 PM-C 14277.2; % diff= 1.77 Audit K0: () this is NORMA FOR THIS INSTRUMENT Flow Audit. (lpm) Flow Audit. (Ipm) BG1 Audit Flowmeter Model: <u>tetra Car</u> S/N: <u>304</u> T-amb: <u>21.7</u> C BP: <u>559.5</u> mm Hg Site Flowmeter Model: <u>Betze Cac</u> S/N: <u>682</u> T-amb: <u>20.0</u> C BP: <u>559</u>, Audit: 16.33 Qa, 12.16 Qs Site: 16.18 Qa, 12.12 Qs Inlet (total) flow. PM2.5 (bypass and CM capped). T = 21,3Audit: <u>3.05</u> Qa, <u>2.28</u> Qs Site: <u>2.96</u> Qa, <u>7.20</u> Qs PM-C (bypass & PM2.5 capped). T= 22 Audit: $\frac{167}{167}$ Qa, $\frac{1.24}{1.24}$ Qs Site: $\frac{1.63}{1.63}$ Qa, $\frac{1.212}{1.21}$ Qs T= $^{22.2}$ MIST ERSE

FDMS Module.	Drver T (fine): 18.3	Dryer T (coarse): $\frac{18.3}{2}$ C.	NOISE	PREQ
<u>r Divio iviodule.</u>			PM2.5,008	267.067
	Dryer DP (fine): <u>-/9,0</u>	Dryer DP (coarse): <u>74.6</u> C.	pm-e joll	251,624
	PM cooler (fine): <u>3,96</u>	PM cooler (coarse): 3.90 C.		

<u>Leak Test.</u>	Position:	Base	Zero	<u>Ref.</u>	Zero	
	PM2.5:	6,10	0.15	0.10	0.15	(Limit: 0.15)
	PM coarse:	0.00	0.27	0,00	0.27	(Limit: 0.15)
	Bypass:	0,07	0,20	0.15	0,11	(Limit: 0.6)

Inlet Cleaning Dates. PM10: 10 SEPT 13 Virtual Impactor: 10 SEPT 13

Manual FRM Audit form Date: 2 OCT 1	13 Auditor: 6. all
Site: XAL Site Operator: A	PRIANE PEREZ - NOT PRESENT
PM size: 2.5 Primary or Collo Run Day? /	<u>VO</u>
Instrument Mfg/Model: 961 P6 2000 Serial #:	
Instrument Time: $(3!0!)$ Actual time: $(3!0!)$	
Instrument readings, Flow: $\frac{16.70}{10}$ lpm $T: \frac{25.4}{25.4}$ C	
Flow Audit	0
Flow Audit. B&(
•	T-amb: <u>26.7</u> C BP: <u>580 15</u> mm Hg
Site Flowmeter Model: DETACAL S/N: 980	T-amb: $\frac{26.0}{C}$ C BP: 580.5 mm Hg
Inlet flow (lpm). Audit: $\frac{16.75}{2}$ Qa, $\frac{12.73}{2}$ Qs	Site flowmeter: 16,74 Qa, 12,74 Qs
- <u>BGI Leak Test.</u> Initial vac: <u>98</u> Final vac: <u>9</u> <u>Partisol Leak Test.</u> Initial vac: In. Hg Resul	$\frac{1}{3}$ cm $\frac{95}{90}$ FALL $\frac{1}{4}$ It:mm Hg/min.
PM10 Inlet Cleaning Date: <u>23 SEPT</u> 13 PM2.5 V	VSSC Cleaning Date: 23 Sept 13
& FOUND "NOT TIGHT" VSOC (4	clone thread - Traphened.
3 PD tostil 9 5/90 - FAil	THIS IS A REVISED HARDWARE
J-1310 IST 10 FAIL.	VERSION WITH A MANUAL
	Leaktest value - STARTING
SIMAT STAFF PRESENT?	w/ PQ-200 SN 906 -
ARMANDO RETAMA	·
MANUEL CAMPOS	THE PROPER LEDK CHECK
JEJUS	PROCEDURE FOR THIS VERSION
	DETHE PQ-200 WAS NOT
	FOLLOWED, RESULTING IN THE
	LEAK-CHELK PRILURE.

Manual FRM Audit form	Date: 20913 Auditor: 6. aller
Site: TLA	Site Operator: ADRIAN PEREZ (NOT Present)
PM size: <u>PM2.5</u> WINS Primary or Coll	o Run Day? \underline{NB}
Instrument Mfg/Model: R+P PARTI	SOL Serial #: 200 FB205 360 112 Firmware: 1.202
Instrument Time: 16:30	Actual time: $\frac{16:32}{CST}$ (CST)
Instrument readings. Flow: $\frac{16.83}{614}$ 16.70	$Ipm \frac{F_{12}\pi F_{12}}{T_{12}} C BP: \underline{580} mm \text{ Hg}$ $T_{A} = 25.0$
Flow Audit.	
Audit Flowmeter Model: <u>Le tra Can</u>	S/N: <u>304</u> T-amb: <u>25.7</u> C BP: <u>578</u> mm Hg
Site Flowmeter Model: Bcita Can	S/N: 980 T-amb: 25.2 C BP: 577.5 mm Hg
Inlet flow (lpm). Audit: $\frac{16.83}{6}$	Qa, $\frac{12.74}{2.81}$ Qs Site flowmeter: $\frac{16.82}{2.81}$ Qa, $\frac{12.81}{2.81}$ Qs
	Final vac: cm
Partisol Leak Test. Initial vac:/2.	<u>J</u> In. Hg Result: Z <u>S</u> mm Hg/min. PASS
PM10 Inlet Cleaning Date: 23 Sep 4 July	B PM2.5 VSSC Cleaning Date: 23 SEP (3 GAA GOA KIINS 13 13

Manual FRM Audit form Da		•
Site: <u>SAG/SAN AGUSTIN</u> Si	te Operator: AAANUE CAMA	105 ADRIAN PEREZ
PM size: 2.5 Primary or Collo	Run Day? $\frac{1}{2}$	NOT PRESENT
Instrument Mfg/Model: 781 PQ 200	Serial #: <u>6 / 5</u>	Firmware:/A
Instrument Time: 10.55 Ad	-	
Instrument readings. Flow: <u>16.7</u> lp		g .
	TAMB=198	
Flow Audit.	21.8	
Audit Flowmeter Model: <u>B61 than</u> S/	N: <u>304</u> T-amb: <u>2017</u> C	BP: <u>5845</u> mm Hg
- KSite Flowmeter Model: 261 Oct 4 Gu S/	N: <u>980</u> T-amb: <u>21-1</u> C	BP: 584,5 mm Hg
Inlet flow (lpm). Audit: 46.45 Qa	$\frac{12.97}{\text{Qs}}$ Site flowmeter: <u>16</u>	<u>.59</u> Qa, <u>12.93</u> Qs
BGI Leak Test. Initial vac: 105	Final vac: <u>101</u> cm PASS	
Partisol Leak Test. Initial vac:	_In. Hg Result: mm Hg/m	iin.
PM10 Inlet Cleaning Date: 10 July	_13 PM2.5 VSSC Cleaning Date:	10 July 13
* SITE tetra CAL	SN 682 WAS NOT E	NORKING.
Delta Cal USED FOR AC	I SITE FLOW CHEEKS DUR	INTAVOLT. GAA
INSPECTION of VENT	orts Appears to have fixed	pressure ports - l the problem, BAJ

Manual FRM Audit form	Date: <u>30713</u>	Auditor: 6	all
Site: MER	Site Operator: <u>ADR</u>	IAN PERE	= 2 (NOT PRESERUT)
PM size: $2.5 \omega^{iNS}$ Primary or Co	llo Run Day? <u>MO</u>)	
Instrument Mfg/Model: Po-200	Serial #: <u>6</u> C	5	Firmware: <u>5,62</u>
Instrument Time: <u>10:27</u>	Actual time: 10:26	_(CST)	
Instrument readings. Flow: <u>16.70</u>	lpm T: <u>24,3</u> C I TA=20,1	BP: <u>586</u> mm Hg	
Flow Audit. B&u	.,		
Audit Flowmeter Model: <u>tetra-Cm</u>	s/N: <u>304</u> т	-amb: 21.8 C	BP: <u>583,5</u> mm Hg
Site Flowmeter Model: BG (-S/N: <u>980</u> T	-amb: <u>1972</u> C	BP: <u>583,5</u> mm Hg
Inlet flow (lpm). Audit: <u>16,83</u>	Qa, 13.05 Qs S	ite flowmeter: 16.70	_Qa, <i>13.68</i> _Qs
BGI Leak Test. Initial vac: 9	7 Final vac: <u>96</u>	cm PASS	
Partisol Leak Test. Initial vac:	In. Hg Result:	mm Hg/min.	
PM10 Inlet Cleaning Date: 20 Set	<u>π13</u> GAY PM2.5 V88 WIM	C Cleaning Date: 20	18 July 13

Manual FRM Audit form	Date: 3 OCT 13 Auditor: 6. Allen	
Site: PED	Site Operator: ADRIAN PEREZ (NOT PRESENT)	
PM size: $2 \sqrt{5}$ Primary or Co	llo Run Day? $\underline{\mathcal{MO}}$	
Instrument Mfg/Model: <u><i>R+P</i></u> <u>PART</u>	SOL Serial #: $205310(1)$ Firmware: $(c202)$	
Instrument Time: <u>15:19</u>		
Instrument readings. Flow:/6-9	Ipm T: <u>Z7.6</u> C BP: <u>576</u> mm Hg TA 25.9	
	TA 25.9	
Flow Audit.		
Audit Flowmeter Model: <u>tetra Ga</u>		
Site Flowmeter Model: <u>BENA CAL</u>	S/N: <u>980</u> T-amb: <u>26,2</u> C BP: <u>573</u> mm Hg	
Inlet flow (lpm). Audit:/ <u>6,73</u>	Qa, $\frac{12.51}{9}$ Qs Site flowmeter: $\frac{16.63}{9}$ Qa, $\frac{12.48}{9}$ Qs	
	Final vac: cm	
Partisol Leak Test. Initial vac: 12	$\frac{2.5}{1}$ In. Hg Result: $\frac{45}{1}$ mm Hg/min. $\frac{1}{1}$	
PM10 Inlet Cleaning Date: 24 SEPT 13 GAA 8 July 13 WINS 8 July 13		
0.000	19	

Manual FRM Audit form	Date: <u>3 OCT (3</u> Auditor: <u>6</u> . Olle	
Site: <u>PED</u>	Site Operator: ADRIAN PEREZ (NOT PRESENT)	
PM size: <u>PM 10</u> Primary or Collo Run Day? <u>MO</u>		
Instrument Mfg/Model: Bty PARTICOL 2000 Serial #: 205350112 Firmware: 6202		
Instrument Time: <u>1539</u>	Actual time: 1538 (CST)	
Instrument readings. Flow: <u>16.6</u>	lpm F: <u>26.3</u> C BP: <u>576</u> mm Hg TA 25.4	
Flow Audit.		
Audit Flowmeter Model: <u>+etva GAL</u>	S/N: <u>364</u> T-amb: <u>27, 2</u> C BP: <u>573</u> mm Hg	
Site Flowmeter Model: $\frac{1361}{DE2TA GAL}$ S/N: $\frac{980}{780}$ T-amb: $\frac{25.8}{6.66}$ C BP: $\frac{573}{644}$ mm Hg		
Inlet flow (lpm). Audit: <u>/6.67</u>	- · · · ·	
BGL eak Pest. Initial vac:	Final vac: cm	
Partisol Leak Test. Initial vac: <u>/</u>	<u>In. Hg</u> Result: <u>47</u> mm Hg/min. <i>PAS</i> S	
PM10 Inlet Cleaning Date: <u>245</u> 8 Jul	y 13 Result <u>Minis</u> Mediant <u>Minis</u> 7023 WINS 8 July 13	

	Date: 40413 Auditor: Gralle
Site: CAM	Site Operator: A PRIAN PEREZ (NOT PRESENT)
PM size: $\frac{2.5}{\omega^{1}}$ Primary or Co	No Run Day? MO
Instrument Mfg/Model:	SOL 2000 Serial #: 205290111 Firmware: 1.202
Instrument Time: <u>0946</u>	Actual time: 0445 (CST)
Instrument readings. Flow: 16.6	Ipm $T: \frac{7}{20.8} C$ BP: $\frac{587}{2}$ mm Hg
	TA 20.1
Flow Audit.	/
Audit Flowmeter Model: <u>Befra Ca</u>	S/N: <u>304</u> T-amb: <u>78</u> C BP: <u>584</u> mm Hg
Site Flowmeter Model: Belta CAL	S/N: <u>980</u> T-amb: <u>19.5</u> C BP: <u>583.5</u> mm Hg
Inlet flow (lpm). Audit: 16.86	Qa, 13.13 Qs Site flowmeter: 16.83 Qa, 13.20 Qs
BGH eak Test. Initial vac:	Final vac: cm
Partisol Leak Test. Initial vac: Z	5 In. Hg Result: 54 mm Hg/min.
\cancel{K} PM10 Inlet Cleaning Date: <u>25 SE</u>	PT 13 PM2.5 VSSC Cleaning Date: 25 SEPT 13 *
* VISVAL [ASPECTION by	ARMANDO RETAMA SHOWED DIRTY PM10
INLET, NO OIL IN	THE WINS PMZ.S IMPACTOR, AND DIRT/SOOT
(N THE DOWN TUB	ING,
CLEANING DATES	ARE FROM SITE TECHNICIAN COG, NOT STELOGBOOK.